
Unlocking State-Tracking in Linear RNNs through
Negative Eigenvalues

Riccardo Grazzi*, Julien Siems*, Jörg KH Franke,
Arbër Zela, Frank Hutter, Massimiliano Pontil

(*equal contribution)

AutoML Seminar
9th of January 2025

Outline
Part 1 (Riccardo)
1. State-tracking
2. Linear RNNs and Known Limits of Current Architectures
3. Contribution 1: Limits of Linear RNNs.
4. Contribution 2: How to unlock State-tracking.

Part 2 (Julien)
1. Extending the Eigenvalue Range of Mamba and DeltaNet
2. Synthetic Experiments
3. Language Modeling Experiments
4. Conclusion and Future Works

State Tracking

Show Initial State State Transitions Where is the ball?

● State is not observable: the ball position is shown only at the start
● The cat needs to watch the entire sequence of transitions

3 cups, one ball

1<=>2

1<=>22<=>3

1<=>3

2<=>3

1<=>3

1 2 3

1 2 3 1 2 3

Finite State Automata (FSA)

Initial state

Transition function

State Tracking = mimic an FSA:
map the sequences of transitions (input) to sequences of states (output).

2<=>31<=>2 1<=>3Alphabet (Finite set)

States (Finite set)
1 2 3 1 2 3 1 2 3

State Tracking Tasks in Text Data

(A8, A7), (A1, B1), (C8, C6), (B1, A1), (A7, C7), (A1, B1),
(C6, A6), (B1, A1), (C7, C8), (A1, B1), (A6, A8)

Tracking a chessboard with non-standard
(source, target) notation for moves

Images modified from Merrill, William, Jackson Petty, and Ashish Sabharwal. "The illusion of state in state-space models." ICML (2024).

Input to the model

Code evaluation

Entity Tracking Alice, Bob and Carl each have a coin. Carl is the only
one having a penny. Alice and Carl trade coins.

State-tracking?

Alice, Bob and Carl each
have a coin. Carl is the only
one having a penny.
Alice and Carl trade coins.

Alice, Bob and Carl each have
a coin. Carl is the only one
having a penny. Carl trades his
penny with Alice.

Modern Language Modeling Architectures

Transformer

Token Mixing
(Parallelizable)

Channel Mixing
(Non-Linear)

Mamba 2

Embedding

Linear RNNs:
More efficient for long sequencesAlice, Bob and Carl each have a coin. Carl is the only

one having a penny. Alice and Carl trade coins.

Tokenize

Linear RNNs (One Layer)

State-transition matrix

State matrix

Yang, Songlin, et al. "Parallelizing Linear
Transformers with the Delta Rule over Sequence
Length.", NeurIPS 2024

Linearity + heavily structured matrices make the recursion efficiently
parallelizable

input token

Yang, Songlin, et al. "Gated Linear Attention
Transformers with Hardware-Efficient Training."
ICML 2024

Gu, Albert, and Tri Dao. "Mamba: Linear-time
sequence modeling with selective state
spaces." arXiv (2023).

GH, non-diagonal:
token+channel mix

Output Channel mix (MLP)

Linear RNNs (One Layer)

State-transition matrix

State matrix Output

Transformers are Linear RNNs with infinite dimensional state and

Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive transformers with linear attention."
ICML 2020.

input token Channel mix (MLP)

Parity (2-cups game, addition modulo 2)

0 1
1

1

0 0

1 1 0 0 1 0

1 0 0 0 1 1

Input bits (transitions)

Parity (states)

Starting state

1

1
1

0 00

We’d like to
handle arbitrary
long sequences

Addition Modulo 3

0 2

1

1

0 0

Start

1 1

2

0

Solving Parity with a Scalar Linear RNN

Solution 1: State = sum of previous values

Solution 2: State = parity

Issue with Linear RNNs

All state-transition matrices have positive eigenvalues in [0,1].

diagonal Linear RNN with positive values cannot solve parity in finite precision
(Sarrof et al. 2024)

GH, non-diagonal

State-transition matrix

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models: A Formal Language Perspective. NeurIPS 2024.

LLMs Struggle to Track States

Transformers and diagonal linear RNNs provably cannot track states in
limited precision and for arbitrary input lengths (Hahn 2020, Merrill et al. 2023,
2024, Sarrof et al. 2024).

William Merrill, Jackson Petty, and Ashish
Sabharwal. The Illusion of State in State-Space
Models. ICML 2024.

William Merrill and Ashish Sabharwal. The
parallelism tradeoff: Limitations of
log-precision trans-
formers. Transactions of the Association for
Computational Linguistics, 11:531–545, 2023.

Yash Sarrof, Yana Veitsman, and Michael
Hahn. The Expressive Capacity of State
Space Models:
A Formal Language Perspective.
NeurIPS 2024.

Hahn, Michael. "Theoretical limitations of
self-attention in neural sequence models."
Transactions of the Association for
Computational Linguistics 8 (2020): 156-171.

In contrast, RNNs and linear RNNs with full state transition matrices can
track states with only one layer, but cannot be parallelized efficiently.

What about non-diagonal Linear RNNs like DeltaNet?

Thm. 1 (Parity): Finite precision linear RNNs cannot solve parity at arbitrary
input lengths if for all layers

⇒ Current linear RNNs cannot solve parity (only positive eigenvalues)
⇒ Diagonal real-valued linear RNNs cannot do modular counting

Contribution: Limits of Linear RNNs in Finite Precision

Thm. 1 (Parity): Finite Precision LRNNs cannot solve parity if for
all layers

Thm. 2 (Modular Counting): Finite Precision LRNNs cannot
count modulo m, with m not a power of two, if for every layer i

Thm. 2 (Modular Counting): Finite precision linear RNNs with L layers cannot
count modulo m, with m not a power of two, if for every the i-th
layer satisfies

Unroll the recurrence with
for simplicity

When the input is constant, i.e. , then the Linear RNN
output in finite precision becomes constant while the state of the parity
automaton alternates between 0 and 1.

Theorem 1 - Proof Idea (Same as Sarrof et al. 2024)

Substitute

0 1
1

1

1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0

Input bits (transitions)

Parity (states)

Start

Unroll the recurrence with
for simplicity

Proof Sketch (One Layer): Unrolling the Recurrence

Unroll the recurrence with (for simplicity) gives Substitute

Linear Time Invariant
Recurrence

State

Extended to matrices by applying it separately to real and imaginary part of each
element of the matrix

Finite Set of reals

Finite Precision

State in Finite Precision

Simplified model: repeated matrix multiplies and sums are in infinite precision,
similar to Merrill et al. (2024)

Infinite precision:

Finite precision:

William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space Models. ICML 2024.

Finite Set of reals

Cast is applied to matrices by applying it separately to real and imaginary part of
each element of matrices and converts real numbers into finite precision:

State in Finite Precision

Simplified model: repeated matrix multiplies and sums are in infinite precision

Matrix Powers Using the Jordan Canonical Form

Block Diagonal with block i

Eigenvalue

Real and Positive Eigenvalues
The imaginary and real part of each element of take the form

Eigenvalue

Polynomial

Exponential (Complex base)

Real and Positive Eigenvalues
The imaginary and real part of each element of take the form

Lemma 1 (values become constant in finite precision)

Eigenvalue

state and layer output
become constant in
finite precision

Parity Can’t Be Modeled - End of Proof Sketch

is constant for large enough t, while

alternates between 0 and 1.

The proof can then proceed by induction over the number of layers

input

If has only real positive eigenvalues, then

LRNN output

parity

Lemma 1 (Part 2):

Theorem 2 Proof Sketch - Real Eigenvalues

layer output

Addition Modulo 3 Can’t Be Modeled

Multiple layers is not as easy as for parity since the output is not
constant as the input

layer output

add mod 3

input

If has only real eigenvalues, then

Products of Generalized Householder (GH) Matrices

Eigenvalue range

DeltaNet has state-transition matrices in

Orthogonal matrices are included only if

Contribution: Expressivity of Products of GH Matrices

Thm. 3 (Permutations): Finite precision linear RNNs with one layer where
state-transition matrices are in can model any FSA whose
transitions are permutations of at most k elements.

⇒ We can easily modify DeltaNet to have state transition
matrices in and thus model swap permutations

Thm. 4 (General FSA): Finite precision linear RNNs with multiple layers
where state-transition matrices are in for a large enough n, can
model any finite state automaton.

Recap of Theoretical Contributions

Open question:
● What can be done with a single GH matrix + multiple layers?

Addition modulo m can be done with 2 layers! (See Appendix).

1. Linear RNNs with products of GH state transition matrices,
each with negative eigenvalues, can mimic any FSA and

2. Can do it with products of k-1 GH matrices and one layer if the
transitions are only permutations of at most k elements.

1. Any Linear RNN with state transition matrices having only
positive real eigenvalues cannot solve parity.

2. Diagonal and Triangular Linear RNNs cannot solve modular
counting, even with negative real eigenvalues.

Eigenvalue Extension for Mamba and DeltaNet

Change for DeltaNet is a one-liner!

Code from Flash Linear Attention (Yang et al. 2024)

https://github.com/sustcsonglin/flash-linear-attention/blob/3bafa4fcb505391d19cb7c47aa9bc9fa8e598b15/fla/layers/delta_net.py#L196

Experiments - Chomsky Hierarchy

→ Can we actually solve parity using linear RNNs?

Experiments - Chomsky Hierarchy
Mod. Arithm. (w/o brackets): 2 - 3 - 3 * 2 mod 5 = 3

 (w/ brackets): ((((3+3)+-1)+-2)-((3-(-3))+((1)+4))) mod 5 = 2

DeltaNet

Synthetic Experiments - Part 1
Parity

Parity
Mod. Arithm.

w.o. brackets
Mod. Arithm.

w./o. brackets

Modified DeltaNet (DeltaNet [-1,1]) can learn
with only swap transitions or, with multiple
layers, when a transition is encoded with
multiple tokens.

Synthetic Experiments - Part 2

Experiments - Permutation Groups
(Permutation group of 5 elements) (Only swaps)

Results:
→ DeltaNet [-1, 1] can solve S5 only swaps (even with 1 layer).
→ Mamba [-1, 1] can’t.

Example: only swaps:
(1, 2, 3, 4, 5) ◦ (1 → 2, 2 → 1)
= (2, 1, 3, 4, 5)

Experiments - Permutation Groups
(Permutation group of 5 elements)

Results:
→ DeltaNet and Mamba can’t solve S5 (expected)
→ Linear RNN with full state-transition matrix can learn to solve S5

Example:
(1, 2, 3, 4, 5) ◦
(1 → 2, 2 → 4, 3 → 2, 4 → 3, 5 → 1)
= (2, 4, 2, 3, 1)

Experiments - Permutation Groups
(Permutation group of 5 elements)

How can we solve S5 using DeltaNet?
→ Products of Householders

Experiments - Permutation Groups
(Permutation group of 5 elements)

Results:
→ DeltaNet and Mamba can’t solve S5 (expected)
→ Linear RNN with full state-transition matrix can learn to solve S5

Example:
(1, 2, 3, 4, 5) ◦
(1 → 2, 2 → 4, 3 → 2, 4 → 3, 5 → 1)
= (2, 4, 2, 3, 1)

Experiments - Permutation Groups

RetrievalState-Tracking

Experiments - Language Modelling

→ Note: Extended eigenvalue range doesn’t cause training instability

RetrievalState-Tracking

Experiments - Language Modelling

Results for Mamba 370M:

- Mamba doesn’t benefit from extended eigenvalue range in language
modelling.

Experiments - Language Modelling

Conclusion

- Inclusion of negative eigenvalues expands the expressivity of linear RNNs.
- DeltaNet is promising due to its superior expressivity compared to Mamba.

- Future Directions:
- Assess real-world improvements in language modeling.
- Increase expressivity of linear RNNs through more complex state-transition

matrices.
- Understanding the trade-off between associative recall and state-tracking.

