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State Tracking

Show Initial State State Transitions Where is the ball?

● State is not observable: the ball position is shown only at the start
● The cat needs to watch the entire sequence of transitions



3 cups, one ball

1<=>2

1<=>22<=>3

1<=>3

2<=>3

1<=>3

1 2 3

1 2 3 1 2 3



Finite State Automata (FSA)

Initial state

Transition function 

State Tracking = mimic an FSA: 
map the sequences of transitions (input) to sequences of states (output).

2<=>31<=>2 1<=>3Alphabet (Finite set)

States (Finite set)
1 2 3 1 2 3 1 2 3



State Tracking Tasks in Text Data

(A8, A7), (A1, B1), (C8, C6), (B1, A1), (A7, C7), (A1, B1), 
(C6, A6), (B1, A1), (C7, C8), (A1, B1), (A6, A8)

Tracking a chessboard with non-standard 
(source, target) notation for moves 

Images modified from Merrill, William, Jackson Petty, and Ashish Sabharwal. "The illusion of state in state-space models." ICML (2024).

Input to the model

Code evaluation

Entity Tracking Alice, Bob and Carl each have a coin. Carl is the only 
one having a penny. Alice and Carl trade coins.



State-tracking?

Alice, Bob and Carl each 
have a coin. Carl is the only 
one having a penny. 
Alice and Carl trade coins.

Alice, Bob and  Carl each have 
a coin. Carl is the only one 
having a penny. Carl trades his 
penny with Alice.



Modern Language Modeling Architectures

Transformer

Token Mixing
(Parallelizable)

Channel Mixing
(Non-Linear)

Mamba 2

Embedding

Linear RNNs: 
More efficient for long sequencesAlice, Bob and Carl each have a coin. Carl is the only 

one having a penny. Alice and Carl trade coins.

Tokenize



Linear RNNs (One Layer)

State-transition matrix 

State matrix

Yang, Songlin, et al. "Parallelizing Linear 
Transformers with the Delta Rule over Sequence 
Length.", NeurIPS 2024

Linearity + heavily structured matrices make the recursion efficiently 
parallelizable

input token

Yang, Songlin, et al. "Gated Linear Attention 
Transformers with Hardware-Efficient Training." 
ICML 2024

Gu, Albert, and Tri Dao. "Mamba: Linear-time 
sequence modeling with selective state 
spaces." arXiv (2023).

GH, non-diagonal:
token+channel mix

Output Channel mix (MLP)



Linear RNNs (One Layer)

State-transition matrix 

State matrix Output

Transformers are Linear RNNs with infinite dimensional state and

Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive transformers with linear attention."
ICML 2020.

input token Channel mix (MLP)



Parity (2-cups game, addition modulo 2)

0 1
1

1

0 0

1 1 0 0 1 0

1 0 0 0 1 1

Input bits (transitions)

Parity (states)

Starting state

1

1
1

0 00

We’d like to 
handle arbitrary 
long sequences



Addition Modulo 3

0 2

1

1

0 0

Start

1 1

2

0



Solving Parity with a Scalar Linear RNN

Solution 1: State = sum of previous values

Solution 2: State = parity



Issue with Linear RNNs

All state-transition matrices have positive eigenvalues in [0,1].

diagonal Linear RNN with positive values cannot solve parity in finite precision 
(Sarrof et al. 2024)

GH, non-diagonal

State-transition matrix

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models: A Formal Language Perspective. NeurIPS  2024.



LLMs Struggle to Track States

Transformers and diagonal linear RNNs provably cannot track states in 
limited precision and for arbitrary input lengths (Hahn 2020, Merrill et al. 2023, 
2024, Sarrof et al. 2024).

William Merrill, Jackson Petty, and Ashish 
Sabharwal. The Illusion of State in State-Space 
Models. ICML 2024.

William Merrill and Ashish Sabharwal. The 
parallelism tradeoff: Limitations of 
log-precision trans-
formers. Transactions of the Association for 
Computational Linguistics, 11:531–545, 2023.

Yash Sarrof, Yana Veitsman, and Michael 
Hahn. The Expressive Capacity of State 
Space Models:
A Formal Language Perspective. 
NeurIPS  2024.

Hahn, Michael. "Theoretical limitations of 
self-attention in neural sequence models." 
Transactions of the Association for 
Computational Linguistics 8 (2020): 156-171.

In contrast, RNNs and linear RNNs with full state transition matrices can 
track states with only one layer, but cannot be parallelized efficiently.

What about non-diagonal Linear RNNs like DeltaNet?



Thm. 1 (Parity): Finite precision linear RNNs cannot solve parity at arbitrary 
input lengths if for all layers

⇒ Current linear RNNs cannot solve parity (only positive eigenvalues)
⇒ Diagonal real-valued linear RNNs cannot do modular counting

Contribution: Limits of Linear RNNs in Finite Precision

Thm. 1 (Parity): Finite Precision LRNNs cannot solve parity if for 
all layers

Thm. 2 (Modular Counting): Finite Precision LRNNs cannot 
count modulo m, with m not a power of two, if for every layer i

Thm. 2 (Modular Counting): Finite precision linear RNNs with L layers cannot 
count modulo m, with m not a power of two, if for every                          the i-th 
layer satisfies



Unroll the recurrence with                 
for simplicity

When the input is constant, i.e.                                   , then the Linear RNN 
output in finite precision becomes constant while the state of the parity 
automaton alternates between 0 and 1.

Theorem 1 - Proof Idea (Same as Sarrof et al. 2024)

Substitute

0 1
1

1

1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0

Input bits (transitions)

Parity (states)

Start



Unroll the recurrence with                 
for simplicity

Proof Sketch (One Layer): Unrolling the Recurrence

Unroll the recurrence with                (for simplicity) gives Substitute

Linear Time Invariant  
Recurrence

State



Extended to matrices by applying it separately to real and imaginary part of each 
element of the matrix

Finite Set of reals

Finite Precision 



State in Finite Precision 

Simplified model: repeated matrix multiplies and sums are in infinite precision, 
similar to Merrill et al. (2024)

Infinite precision:

Finite precision:

William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space Models. ICML 2024.



Finite Set of reals

Cast is applied to matrices by applying it separately to real and imaginary part of 
each element of matrices and converts real numbers into finite precision:

State in Finite Precision 

Simplified model: repeated matrix multiplies and sums are in infinite precision



Matrix Powers Using the Jordan Canonical Form

Block Diagonal with block i

Eigenvalue



Real and Positive Eigenvalues
The imaginary and real part of each element of                     take the form

Eigenvalue

Polynomial

Exponential (Complex base)



Real and Positive Eigenvalues
The imaginary and real part of each element of                     take the form

Lemma 1 (values become constant in finite precision)

Eigenvalue

state and layer output 
become constant in 
finite precision



Parity Can’t Be Modeled - End of Proof Sketch

is constant for large enough t, while

alternates between 0 and 1.

The proof can then proceed by induction over the number of layers

input

If           has only real positive eigenvalues, then

LRNN output

parity



Lemma 1 (Part 2):

Theorem 2 Proof Sketch - Real Eigenvalues  

layer output



Addition Modulo 3 Can’t Be Modeled

Multiple layers is not as easy as for parity since the output is not 
constant as the input

layer output

add mod 3

input

If           has only real eigenvalues, then



Products of Generalized Householder (GH) Matrices

Eigenvalue range

DeltaNet has state-transition matrices in

Orthogonal matrices            are included only if 



Contribution: Expressivity of Products of GH Matrices

Thm. 3 (Permutations): Finite precision linear RNNs with one layer where 
state-transition matrices are in                             can model any FSA whose 
transitions                                    are permutations of at most k elements.

⇒ We can easily modify DeltaNet to have state transition 
matrices in                         and thus model swap permutations

Thm. 4 (General FSA): Finite precision linear RNNs with multiple layers 
where state-transition matrices are in                         for a large enough n, can 
model any finite state automaton.



Recap of Theoretical Contributions

Open question:
● What can be done with a single GH matrix + multiple layers?

Addition modulo m can be done with 2 layers! (See Appendix).

1. Linear RNNs with products of GH state transition matrices, 
each with negative eigenvalues, can mimic any FSA and 

2. Can do it with products of k-1 GH matrices and one layer if the 
transitions are only permutations of at most k elements.

1. Any Linear RNN with state transition matrices having only 
positive real eigenvalues cannot solve parity.

2. Diagonal and Triangular Linear RNNs cannot solve modular 
counting, even with negative real eigenvalues.



Eigenvalue Extension for Mamba and DeltaNet

Change for DeltaNet is a one-liner!

Code from Flash Linear Attention (Yang et al. 2024)

https://github.com/sustcsonglin/flash-linear-attention/blob/3bafa4fcb505391d19cb7c47aa9bc9fa8e598b15/fla/layers/delta_net.py#L196


Experiments - Chomsky Hierarchy

→ Can we actually solve parity using linear RNNs?



Experiments - Chomsky Hierarchy
Mod. Arithm. (w/o brackets):  2 - 3 - 3 * 2 mod 5 = 3

      (w/ brackets):    ((((3+3)+-1)+-2)-((3-(-3))+((1)+4))) mod 5 = 2

DeltaNet



Synthetic Experiments - Part 1
Parity

Parity
Mod. Arithm. 

w.o. brackets
Mod. Arithm. 

w./o. brackets



Modified DeltaNet (DeltaNet [-1,1]) can learn 
with only swap transitions or, with multiple 
layers, when a transition is encoded with 
multiple tokens.

Synthetic Experiments - Part 2



Experiments - Permutation Groups
(Permutation group of 5 elements)    (Only swaps)

Results: 
→ DeltaNet [-1, 1] can solve S5 only swaps (even with 1 layer).
→ Mamba [-1, 1] can’t.

Example:     only swaps: 
(1, 2, 3, 4, 5) ◦ (1 → 2, 2 → 1) 
= (2, 1, 3, 4, 5)



Experiments - Permutation Groups
(Permutation group of 5 elements)

Results: 
→ DeltaNet and Mamba can’t solve S5 (expected)
→ Linear RNN with full state-transition matrix can learn to solve S5

Example:      
(1, 2, 3, 4, 5) ◦ 
(1 → 2, 2 → 4, 3 → 2, 4 → 3, 5 → 1) 
= (2, 4, 2, 3, 1)



Experiments - Permutation Groups
(Permutation group of 5 elements)

How can we solve S5 using DeltaNet?
→ Products of Householders 



Experiments - Permutation Groups
(Permutation group of 5 elements)

Results: 
→ DeltaNet and Mamba can’t solve S5 (expected)
→ Linear RNN with full state-transition matrix can learn to solve S5

Example:      
(1, 2, 3, 4, 5) ◦ 
(1 → 2, 2 → 4, 3 → 2, 4 → 3, 5 → 1) 
= (2, 4, 2, 3, 1)



Experiments - Permutation Groups



RetrievalState-Tracking

Experiments - Language Modelling



→ Note: Extended eigenvalue range doesn’t cause training instability 

RetrievalState-Tracking

Experiments - Language Modelling



Results for Mamba 370M:

- Mamba doesn’t benefit from extended eigenvalue range in language 
modelling.

Experiments - Language Modelling



Conclusion

- Inclusion of negative eigenvalues expands the expressivity of linear RNNs.
- DeltaNet is promising due to its superior expressivity compared to Mamba.

- Future Directions:
- Assess real-world improvements in language modeling.
- Increase expressivity of linear RNNs through more complex state-transition 

matrices.
- Understanding the trade-off between associative recall and state-tracking.


